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Abstract
We present numerical evidence showing that any three-dimensional subspace
of C

3 ⊗ C
n has an orthonormal basis which can be reliably distinguished

using one-way LOCC (local operations and classical communication), where
a measurement is made first on the three-dimensional part and the result used
to select an optimal measurement on the n-dimensional part. We also show
that the order of measurement is essential, by providing an example of a three-
dimensional subspace of C

3 ⊗ C
5 which does not have any basis that can be

distinguished by measuring first on the five-dimensional factor.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

In a bipartite space A ⊗ B, orthogonal entangled states can be reliably distinguished using
entangled measurements. However it is generally not possible to reliably distinguish such
states on A ⊗ B using product measurements, or even more general separable measurements.
This question of distinguishing orthogonal entangled states using LOCC (local operations and
classical communication) has been investigated in several recent papers in a variety of settings
[1–7, 10].

In this paper we follow a slightly different line of enquiry, by asking whether a given
subspace of the product A ⊗ B contains any orthonormal basis which can be reliably
distinguished using LOCC. An early positive result in this direction is due to Walgate
et al [12], who showed that any two orthogonal bipartite states can be reliably distinguished
using LOCC. This implies in particular that every two-dimensional subspace of a bipartite
space has a basis that can be reliably distinguished using LOCC. In the direction of negative
results, Gregoratti and Werner [6] proved the existence of bipartite subspaces which do not
have any basis that can be reliably distinguished using LOCC. Recently Watrous [13] has
constructed explicit examples of (d2 − 1)-dimensional subspaces in C

d ⊗ C
d which have no
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basis that can be distinguished using LOCC, for d � 3. In fact Watrous’ result is even stronger,
because he proves that there is no separable POVM which can distinguish any basis. In related
work Winter [14] has found an expression for the optimal asymptotic rate of transferring
bipartite quantum states to one party using LOCC, thereby obtaining a lower bound for the
optimal asymptotic rate of distinguishing states using LOCC.

In this paper we report on numerical investigations of this question in some low-
dimensional cases, namely for three-dimensional subspaces of C

3 ⊗ C
n with n � 3. We

have found in every case that there is an orthonormal basis of the subspace which can be
reliably distinguished using one-way LOCC, where measurements are made first on C

3, and
the result used to select the optimal measurement on C

n. We have also found asymmetry
in the order of measurements for n � 5—in general, it is not possible to find a basis which
can be distinguished by first measuring on C

n, and then using the result to select the optimal
measurement on C

3.
Our investigations are partially motivated by the idea of using measurements on the

environment to reduce the noise in a quantum channel [7, 8, 14]. The Lindblad–Stinespring
representation [9, 11] shows how the effect of noise on a quantum system can be understood
as a two-step process: first the system and environment are entangled by a non-local unitary
operator U, and then the environment is traced out. The idea here is to replace the second step
by a measurement on the environment, and then to pass the result of this measurement to the
system side, where it can be used to select the best measurement strategy there. In general
this should allow more information to be reliably recovered from the channel.

To be more specific, if the system is in a pure state |ψ〉 and the environment is in a pure
state |ω〉, then the unitary operator maps the initial product state |ψ〉 ⊗ |ω〉 to the entangled
state U(|ψ〉 ⊗ |ω〉). As |ψ〉 varies over the system state space, the states U(|ψ〉 ⊗ |ω〉)
vary over a subspace V of the system plus environment. Suppose that some set of states
{U(|ψi〉⊗|ω〉)} in V can be reliably distinguished using one-way LOCC. Then we can encode
classical information in the system states {|ψi〉}, and completely recover this information at
the output by using coordinated measurements of the environment and the system. If V has
a basis of states with this property, then the classical information-carrying capacity of the
channel is log d, where d is the system dimension. In this setting our conjecture would imply
that every channel with a three-dimensional environment has environment-assisted classical
capacity equal to log 3.

2. Results

Our results are summarized in the following statement. Because we rely on numerical
investigations at this time, we pose the statement as a conjecture.

Conjecture 1. Let V be a three-dimensional subspace of C
3 ⊗ C

n, with n � 3. Then there is
an orthonormal basis of V which can be reliably distinguished using one-way LOCC, where
measurements are made first on C

3, and the result used to select the optimal measurement
on C

n.

2.1. Discussion of the numerical investigations

The numerical search was conducted by randomly selecting three-dimensional subspaces of
C

3 ⊗ C
n, for the range of values 3 � n � 9. In each subspace a search was performed over

randomly selected orthonormal bases {|θ1〉, |θ2〉, |θ3〉} and over random partial measurements
on the C

3 part. The partial measurement on C
3 was performed by projecting onto a randomly
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Table 1. Numerical data for three-dimensional subspaces of C
3 ⊗ C

n with n = 3, 4, . . . , 9,
namely: the average value of the objective function H for values less than the threshold value of
10−6, and the number of tested subspaces.

n Average H Number of subspaces

3 2.816 258 × 10−8 138 211
4 3.789 893 × 10−8 30 271
5 3.789 893 × 10−8 32 278
6 4.127 063 × 10−8 30 000
7 4.394 015 × 10−8 30 000
8 5.130 496 × 10−8 30 216
9 5.594 670 × 10−8 30 006

selected orthonormal basis {|v1〉, |v2〉, |v3〉}. Denoting by |φ(i, a)〉 (i, a = 1, 2, 3) the
projection of |θi〉 onto |va〉, it follows that the condition for reliably distinguishing the basis
states {|θ1〉, |θ2〉, |θ3〉} with this partial measurement is that for each measurement outcome a
the three states |φ(1, a)〉, |φ(2, a)〉, |φ(3, a)〉 should be orthogonal. Define

H(V ) = min

⎧⎨
⎩

3∑
a=1

3∑
i �=j=1

|〈φ(i, a)|φ(j, a)〉|2
⎫⎬
⎭ (1)

where the minimization is performed over all bases |θi〉 and partial measurements |va〉. Clearly
H(V ) � 0, and H(V ) = 0 if and only if for some basis and partial measurement the vectors
{|φ(i, a)〉}3

i=1 are orthogonal for each outcome a.
The minimization problem described above was implemented using the package

TOMLAB. Table 1 was obtained by randomly sampling three-dimensional subspaces of
C

3 ⊗ C
n, and for each subspace searching for an orthonormal basis that could be reliably

distinguished using one-way LOCC as described above. Column 3 shows the number of
subspaces sampled for each value of n. For each subspace, the objective function (1) was
determined by minimizing over choices of orthonormal basis in V and partial measurements
in C

3. The threshold value 10−6 was used to terminate the search for the minimum value. In
every case this threshold was reached. To test robustness, the algorithm was run with different
starting values for the same subspace, and in every case the same solution was discovered. The
algorithm was also tested on cases where the solution could be determined by hand. Column 2
shows the average minimum value of the objective function when the search was terminated.
As explained in the next section, it is sufficient to consider values of n in the range 3 � n � 9.

3. Mathematical formulation

The mathematical statement of the result in the case C
3 ⊗ C

n is the following. From the
definitions of θi〉, |va〉 and |φ(i, a)〉 it follows that

|θi〉 =
3∑

a=1

|va〉 ⊗ |φ(i, a)〉 (2)

for i = 1, 2, 3. For each a, b = 1, 2, 3 define the 3 × 3 matrix Mab by

(Mab)ij = 〈φ(i, a)|φ(j, b)〉 (3)
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and let M be the 9 × 9 positive semidefinite matrix whose 3 × 3 blocks are Mab, that is

M =
⎛
⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠ . (4)

Then M is positive semidefinite, and

M11 + M22 + M33 = I. (5)

Furthermore M = R∗R where R denotes the n × 9 matrix with columns |φ(i, a)〉. The
condition that the states |φ(i, a)〉 are orthogonal for each measurement result is that the
matrices M11,M22,M33 are diagonal.

Changing the basis vectors |θi〉 in the subspace induces a map Mab �→ WMabW
∗

(a, b = 1, 2, 3) for some element W of SU(3). In a similar way, changing the measurement
basis in C

3 induces the map Mab �→ ∑
c,d UacMcdU

∗
db for some matrix U in SU(3). Hence

conjecture 1 implies that there are unitaries W,U ∈ SU(3) such that the diagonal blocks of
the conjugated matrix

(W ⊗ U)M(W ⊗ U)∗ (6)

commute.
Now suppose that M is any positive semidefinite 9 × 9 matrix satisfying (5). Then we can

write M = T ∗T for some k × 9 matrix T, with k � 9, and the columns of T provide a set of
vectors which arise by performing partial measurements on some triplet of orthogonal states
in C

3 ⊗C
k . It follows that every positive semidefinite matrix of the form (4) satisfying (5) can

be associated with a three-dimensional subspace of C
3 ⊗ C

k with a chosen orthonormal basis,
and with a specified basis of C

3. So conjecture 1 can be reformulated as the statement that for
any positive semidefinite 9 × 9 matrix satisfying (5), there are unitaries W,U ∈ SU(3) such
that the diagonal blocks of the conjugated matrix (6) commute.

Now consider the case of distinguishing a basis in a subspace V of C
3 ⊗ C

n with n > 9.
As described above this leads to a positive semidefinite 9 × 9 matrix M satisfying (5). So
if the conjecture holds, then there are W,U ∈ SU(3) such that the diagonal blocks of the
matrix (6) commute. Applying these transformations to the basis of V and the measurement
basis in C

3 generates a set of orthogonal states in C
n for each measurement outcome, which

is the desired result for V . Hence it is sufficient to prove the conjectured commutativity result
for the conjugated matrix (6), and therefore it is sufficient to show that distinguishability holds
for subspaces of C

3 ⊗ C
n with n � 9.

4. Related results

4.1. One-way LOCC subspace discrimination is not symmetric

A numerical search readily turns up examples of three-dimensional subspaces of C
3 ⊗ C

n

which have no basis that can be reliably distinguished using one-way LOCC with partial
measurement first on the C

n factor, for n � 5. We present one of these examples below.
Interestingly, three-dimensional subspaces of C

3 ⊗ C
4 do not seem to share this property.
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The three states {|θ1〉, |θ2〉, |θ3〉} below generate a subspace of C
3 ⊗ C

5 which numerical
evidence shows does not have a basis that can be reliably distinguished using one-way LOCC,
with partial measurement first made on the C

5 factor.

|θ1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.2450 − 0.0054i
−0.1694 + 0.0815i
0.1071 − 0.3191i
0.0655 − 0.3190i

−0.1911 − 0.1862i
0.1185 + 0.3259i

−0.2530 + 0.0480i
0.1194 − 0.1987i
0.1948 − 0.2106i
0.0595 + 0.2934i
0.1286 − 0.1427i
−0.1420 + 0.1308i
−0.2367 + 0.1399i
0.1384 − 0.0264i
0.0867 + 0.1573i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |θ2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1438 + 0.2108i
−0.3214 + 0.1308i
0.1229 + 0.0319i
0.1775 − 0.1070i
0.2091 − 0.1811i
−0.0937 + 0.1880i
0.1609 + 0.0272i
0.1705 + 0.0996i

−0.0630 + 0.0729i
0.3389 − 0.1242i
0.0201 − 0.2668i
0.1127 − 0.3331i
0.2338 + 0.3325i

−0.1798 − 0.0796i
−0.1097 + 0.1360i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|θ3〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0390 − 0.0484i
0.0405 − 0.2603i
0.2206 + 0.2432i

−0.2843 − 0.0751i
−0.2416 − 0.1380i
0.0510 + 0.3270i
0.1691 + 0.0829i

−0.3761 − 0.1033i
0.0988 + 0.1388i
0.3138 + 0.2228i
0.0553 + 0.2272i
0.0468 − 0.0164i
0.1966 − 0.1044i
−0.0147 + 0.1239i
−0.2313 + 0.0715i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4.2. Channel capacity assisted by LOCC

In some cases it may be possible to more reliably distinguish output states of a noisy quantum
channel by using measurements on the environment in addition to measurements on the system.
This idea of using information from the environment to enhance channel capacity has been
pursued in a number of settings [7, 8, 14]. Winter [14] introduced the notation environment-
assisted to mean a measurement which is first performed on the environment, and where the
result is used to select an optimal measurement on the system; and environment-assisting,
meaning a measurement which is first performed on the system, and where the result is used
to select an optimal measurement on the environment.

As discussed in the introduction, the Lindblad–Stinespring representation [9, 11] allows
the question of finding the environment-assisted/assisting classical capacity to be formulated
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as the problem of finding a basis of an entangled subspace of the system plus environment which
can be reliably distinguished using one-way LOCC. In this setting our conjecture would imply
that every channel with a three-dimensional environment has environment-assisted classical
capacity equal to log 3, and every qutrit channel has environment-assisting classical capacity
equal to log 3.

5. Conclusions

We have used numerical techniques to investigate the effectiveness of one-way LOCC in
reliably distinguishing some basis of a subspace in a bipartite space. Our results show that
every three-dimensional subspace of C

3 ⊗ C
n has a basis which can be distinguished by one-

way LOCC, when measurements are first performed on the C
3 part and the result is then used

to select the optimal measurement on the C
n part. The same numerical techniques show that

one-way LOCC is not symmetric, and that many three-dimensional subspaces of C
3 ⊗ C

n do
not have any basis that can be distinguished using one-way LOCC starting with a measurement
on the C

n part, for n � 5.
There are several further directions to pursue in this line of research. One direction is to

look for an analytical proof of our results, possibly by extending work of Nathanson [10] and
others on LOCC state discrimination. Another direction is to continue numerical investigations
in higher dimensions. We plan to work along both of these lines of investigation.
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